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Abstract. We discuss and calculate parity conserving (PC) and parity violating (PV) geometric phases
for the metastable 2S states of hydrogen and deuterium. The atoms are supposed to be subjected to
slowly varying electric and magnetic fields which act as external parameters for the atoms. Geometric flux
density fields are introduced which allow for an easy overview how to choose the paths in parameter space
in order to obtain only PC or only PV geometric phases. The PV phases are calculated in the Standard
Model of particle physics. Even if numerically they come out small they have interest of principle as a new

manifestation of parity violation in atomic physics.

PACS. 03.65.Vf Phases: geometric; dynamic or topological — 11.30.Er Charge conjugation, parity, time
reversal, and other discrete symmetries — 31.70.Hq Time-dependent phenomena: excitation and relaxation
processes, and reaction rates — 32.80.Ys Weak-interaction effects in atoms

1 Introduction

In this article we discuss the atomic states of hydrogen and
deuterium with principal quantum number n = 2 in slowly
varying electric and magnetic fields. We are interested in
parity (P) violating effects for the metastable 2S states.

In the accompanying paper [1] we have already dis-
cussed the motivation for our study. There we have made
a detailed investigation of the adiabatic limit for a sys-
tem containing metastable and short lived states. In the
following the sections of [1] shall be quoted as Section 1.1
etc. and equation numbers as (I.1) etc.

Our present paper II is organised as follows. In Sec-
tion 2 we review briefly the parity violating Hamiltonian
relevant for our atomic systems. We define our notation for
the n = 2 states and give the mass matrix for these states
in external electric and magnetic fields. In this paper we
always consider states at rest. The case of atoms travel-
ling in the atomic beam interferometer [2] will be treated
elsewhere. In Section 3 we study the adiabatic limit for
the metastable 2S states using the results of Section I.6.
We identify the P-conserving (PC) and P-violating (PV)
contributions to the geometric phases. In Section 4 we cal-
culate these phases for the case that the geometric phase
factor matrix is diagonal. In this case we have only Abelian
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geometric phases. We give a graphical representation of
these geometric phases in terms of surface integrals over
geometric flux densities in the space of electric and mag-
netic fields. This allows us to see in an easy way how the
paths in parameter space have to be chosen in order to
get either pure PC or pure PV phases. Section 5 contains
our conclusions and an outlook. In Appendix A we collect
tables giving the relevant numerical quantities of our sys-
tems. Appendix B contains a discussion of the adiabaticity
condition for our concrete cases and Appendix C gives the
detailed calculations for the geometric flux densities.

We use units h = ¢ = 1 if other units are not explicitly
indicated.

2 Hamiltonian and state vectors
2.1 The P-violating Hamiltonian

In the framework of the Standard Model (SM) [3-5]
the effective P-violating Hamiltonian relevant for atomic
physics is due to the exchange of a Z boson between the
atomic electrons and the quarks in the nucleus. In terms
of the electron and quark field operators we have

Hpy = HE) + HS), (1)
G .
HY) = ——= [ &z 2g5e(2)y"yse(x)

V2
x (Z g@@(m)vuq@)) , 2)
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HY) = &z 295 e(x)y e()

G
V2
X <Z g‘i;q(w)m%q(w)) ! (3)

where ¢ = u,d, s, neglecting possible contributions from
the heavy quarks ¢, b, t. The g7 ,, and 9?4,\/ are the neutral
current coupling constants for the electron and the quarks,
respectively, and G is Fermi’s constant. For the notation
and the definitions see [6,7]. In the framework of the SM
the coupling constants of the weak neutral current are

gt = —% + 2sin® Dy, g9a=-3 (4
gy = 3 — 3 sin® dw, 9% =3 (5)
ds 1 2 2 ds _ 1

gy~ = —5 + 3sin” dw, 9ga = 73 (6)

where ¥y is the weak mixing angle.

For our study of atomic parity violation (APV) in light
atoms, it is sufficient to consider a point-like, infinitely
heavy, nucleus along with a nonrelativistic approximation
of Hpy (for details see [7]). In the nonrelativistic reduc-
tion, the effective P-violating Hamiltonians (2), (3) for an
atom with proton number Z and neutron number N read

W= VN (@)oo 2 @)
g

8= a0 p)
+ (o P o) (@)} ®

Here o and p are the Pauli spin matrix vector and the
momentum operator for the electron, respectively, and I
is the nuclear spin operator. The QE}V’Q) (Z, N) are the weak
charges of the atomic nucleus, given by

QW (Z,N) = —4¢5 {g(2Z + N) + gt (Z +2N)}, (9)

1
QW (Z,N) =497 Y g4 724(Z.N). (10)
q

The weak charge Q%Q,) (Z, N) exists, of course, only for nu-
clei with spin I # 0. The quantities Ag(Z, N) are the total
polarisations of the nucleus carried by the quark species
q. In the SM we have with (4) to (6)

W(Z,N)=(1—4sin®>9w)Z — N, (11)
)z, N) = %(1 — 4sin® V) (12)

x [Au(Z,N) — Ad(Z,N) — As(Z, N)] .
(13)

It was pointed out recently in [8] that the measurement of
%)(Z, N) is still the main motivation for APV studies,
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since it allows for a determination of sin® ¥y, which is
complementary to high-energy physics. Such low-energy
determinations of sin? 9y have, of course, been done with
neutrino and electron scattering experiments. For a review
see Section 10 in [9]. It is a challenge for experimentalists
to see which method can give the best precision. As is
clear from (12) APV measurements can also contribute to
the study of the spin structure of light nuclei. For recent
reviews of the available information on the spin structure
of the nucleons see for instance [10-13].

2.2 The n = 2 states for hydrogen and deuterium

We consider the subspace of atomic states with principal
quantum number n = 2 for hydrogen and deuterium. As
discussed in Section .2, the effective Schrodinger equation
for these systems reads in the Wigner-Weisskopf approxi-
mation

.0
i 11) = L(O)]), (14

where Z(t) is the non-Hermitian mass matrix and [t)
the state vector of the undecayed atom in the (n = 2)-
subspace. Here and in the following we use, in contrast
to the companion paper I, the time t instead of the re-
duced time 7 (I1.3) as variable for time dependent quan-
tities. That is, we set 7o = T in (I.3). As in paper I we
suppose that . (t) is diagonalisable for all times ¢. Then
we have for each time ¢ a complete set of right and left
eigenvectors satisfying

A ()|a;t) = E(a, t)]a, t),

(ot (t) = (a, t| B t),
Ea,t) = En(a,t) — %F(a,t),

(a=1,...,N). (15)
Here E(a,t) are the complex energy eigenvalues which
can be separated into a real part EFr(a,t) and an imag-
inary part —%F (o, t) leading to an exponential decay of
the atomic state with decay rate I'(«,t) (see Sect. 1.2).

For hydrogen with principal quantum number n = 2
there are N = 16 basis states, whereas for deuterium we
have N = 24 states. As a set of basis vectors we choose
coupled states of nuclear spin |I, I5), electron spin |%, S3)
and electron orbital angular momentum |n, L, L3). We de-
note these basis states by |nL;, F, F3), where J is the to-
tal angular momentum of the electron and F|, F3 are the
quantum numbers for the total angular momentum of the
atom.

The mass matrix .# (t) contains contributions from the
external fields and the PV Hamiltonians (7), (8). The PV
Hamiltonians mix the 2S and 2P states of hydrogen-like
atoms in the (n = 2)-subspace. In the Coulomb approxi-
mation for the wave functions we get the following matrix
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elements

(281 /2, ', F4| HSO|2Py /o, F, Fy) =

*151(Z7N)L(Z7N) 5F’,F5F3(,F37 (16)
(2810 F', Fy|HLY|2P1 jo. F, Fs) =
—i02(Z,N)L(Z,N) [F(F +1) — I(I +1) - 3]
X 5F’,F5F:;7F37
(1-41<RF<1+1), (17)
and
(281 /2, F', Fy|HO)|2Ps 0, F, F3) = 0,
(281 /9, F', Fy|HS) 2P 0, F, F3) = 0,
(F-31<F<r+yI-3<F<I+}). (8
In (16), (17) define the PV parameters
5z N) = V3G Wz N)
o 647v2rL(Z)m. L(Z,N)
= —2.68827(3) x 10717 =W 2"/ oy
(i=1,2). (19)

Here rp(Z) = (Zam.)™' = Z7lrg(1) is the first Bohr
radius and L(Z,N) = E(2S;/3) — E(2P;/3) is the Lamb
shift for a hydrogen-like atom with proton number Z and
neutron number N. The numerical factor in (19) was ob-
tained using the values for G, rg(1) and m. from [9].
With the Lamb shifts listed in Table 3 of Appendix A
we get for ordinary hydrogen
5;(1,0) = —6.14477(6) x 10712 Q\)(1,0), (i =1,2),
(20)

and for deuterium

8:(1,1) = —6.13671(6) x 1072 Q{(1,1), (i =1,2).
(21)

The numerical values of d; » for hydrogen and deuterium
can be found in Table 3 of Appendix A. The mass matrix
for these atoms in the (n = 2)-subspace including PV
contributions can now be written as

M) = My~ D E(t) — - B(E) + 015 + oy,

(22)
where we define for i = 1,2
5t = <<2L’ , F F)HY 2L, F, F3>). (23)
The mass matrix for zero external fields,
M o(01,02) = Mo+ 61MG) + M, (24)
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and the matrix representations D and p of the electric
and magnetic dipole operators are shown in Tables 5, 6
and 7 of Appendix A, respectively.

At the end of this section, we introduce some no-
tation. The atomic states for zero external fields, that
is the eigenstates of .#(d1,02), will be written ei-
ther in the short-hand notation |a,d1,d2) or, with ex-
plicit quantum numbers, in the form |2f/J,F, F3,01,09).
For non-zero electric and magnetic fields the eigen-
states of the full mass matrix Z(¢t) will be writ-
ten in the forms |a,t,d1,d2), |a, E(t),B(t),d1,02), and
|2f/], F, F3,E(t),B(t),01,02), depending on the context.

3 Adiabatic limit and geometric phases

In the absence of external fields the 2S states are
metastable, the 2P states decay fast. The theoretical life-
times from recent QED calculations are

7 =I'g" =8.2207"'s = 0.1216s,
mp = I'pt = (6.2649 x 10%)7's = 1.596 x 10775,

see [14,15]. An external electric field mixes the 2S and
2P states. The lifetimes of these mixed states are shown
for hydrogen in Figure 1, similar results can be obtained
for deuterium. For the numbering scheme see Table 4 of
Appendix A. Note that the metastable states are labelled
in a different way as in I, where the numbering was a =
1,..., M for a total of M metastable states.

In the electric field the 2S states, that is, the atomic
states with a € {9,10,11,12} = JX for hydrogen and
a € {13,14,15,16,17,18} = JL for deuterium quickly
become more and more unstable with increasing |€|. Still,
for

|€] <250V /cm (27)
we have for the lifetimes of these states
Ta 2107%s,  (a€ JHP), (28)
and
Ta/T8 25 (29)

for a € JHP and 3 any of the 2P states. The ratio of
lifetimes (29) should be sufficient in order to apply the
results of I to the systems considered here. In the following
we thus have to keep in mind the restriction (27) in the
discussion of adiabatic limits and geometric phases.

We suppose that our atom is subjected to slowly vary-
ing electric and magnetic fields. In I we have — for math-
ematical convenience — worked with the limit T" — oo,
making the variation of the fields smaller and smaller in
real time. In reality we shall identify 7" with the obser-
vation time being of the order of 79 = I'g 1 We discuss
the resulting adiabaticity condition in Appendix B, where
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Fig. 1. The lifetimes of the mixed 2S,,, and 2P,/ states of
hydrogen in an external electric field £ = £es. Figure (a) shows
the 28, 5 states with labels o € {9, 10, 11, 12}, figure (b) shows
the 2P; /5 states labelled by o € {13,14,15,16}. The lifetimes
of the 2P3,, states with labels a € {1,...,8} are not shown
here. The variation of the 2P/, lifetimes is about two orders
of magnitude smaller than that of the 2P, lifetimes. For the
numbering scheme see Table 4 of Appendix A.
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based on the results of I we find that typically the rate of
change of the external fields must satisfy

1 |0E(t)| 1
B E | o \< ' (30)

1 [9B(t)| 1

Bl el A P 1
te[oat);] By | Ot ‘ < Tg’ (31)

where & = 477.3V /cm and By = 45.65mT, see (B.10),
(B.16), (B.20) and (B.22). In the following we always sup-
pose this to hold.

Now we can apply the results of Section I.6. We sup-
pose that we start at time ¢t = 0 with metastable states
only,

(0) H,D

Yo aeJh

«(0) = m 32
Yal(0) {0 otherwise. (32)
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The time evolution of the metastable states is then given
by (I.78), neglecting non-adiabatic corrections,

t) = Z Uaﬁ(t)X( )

BETm

(33)

Here and in the following we use J,, always understand-
ing it as JH for hydrogen and J2 for deuterium. In the
present paper we shall only discuss the case where, by suit-
able magnetic fields, the eigenenergies of the metastable
states are separated such that condition (I.19) holds. We
have then, according to I, the case that the components
of the metastable states evolve independently and no mix-
ing occurs. In other words, the geometric phase matrix is
diagonal (see (1.86)—(1.88)) and we have (with 79 = T,
T=1)

Va(t) = exp [~iga(t) + aa(t)] X

for a € Jy,. Here ¢4 (t) is the dynamical phase (see (1.21))

(34)

%m:AWE@m (35)

and Y (t) is the geometric phase (1.22) given here by

t
'Yaa(t;61752):/ dt/ (Oét 51,(52|1 |Oét (51,52) (36)
0

In detail we shall suppose that there is a constant mag-
netic field B in 3-direction and that only the electric field
E(t) varies with time. The magnetic field alone will lead
to the usual Breit-Rabi diagram of the energy levels. This
is shown in Figures 2a and 2b for the hydrogen and deu-
terium 2S states, respectively.

For a magnetic field |B| > 1 mT the splittings in energy
AF of the Zeeman levels satisfy

|AE| Z AEy = 0.02 peV,
AEy/h = 5 MHz. (37)
Then the frequencies associated with the variation of the
electric field should be much smaller than the one of (37).
That is, we consider the Fourier analysis of the electric
field strength:

> d .
E(t) = [ oW (38)
The requirement is that |€(w)| # 0 only for
lw| < |AEy/h| =3 x 107s7 L, (39)

In other words, the variation of £ (t) should be negligible
over time intervals of order h/AFEy 2 2 x 10~7 s. Then we
will have a geometric phase matrix which is diagonal.

In [16] it was shown that time reversal invariance for-
bids shifts linear in the P-violating parameters for the
eigenenergies of states in a spatially constant electromag-
netic field. This implies, in particular, that the energies
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Fig. 2. The Breit-Rabi diagrams for the metastable states of

hydrogen (a) and deuterium (b). The energy values are relative
to the centre of zero-field energies of the 2P, /, states.

E(a,t) and the dynamical phases ¢, (t) have no d-linear
terms. They are insensitive to P-violation if we neglect
terms of order §2. The geometric phases, on the other
hand, do have J-linear terms as we shall see explicitly be-
low.

In the following it is convenient to discuss the geomet-
ric phases using the parameter space R, which in our case
is the six dimensional space of electric and magnetic field
strengths. The path C C R along which the atom is led in

Metastable states, the adiabatic theorem and parity violating geometric phases II
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R is given by a time dependent parameter vector
R(t) = (&1(t), £2(1), E3(t), Ba(t), B2 (1), Bs(t)).  (40)

The time dependence of the atomic basis states (15) is
only through R. That is, we can set

|Oé,t,(51,52) = |Oé,R(t),(51,52) (41)

and thus
dR(t)

= VR|O(,R, 61;62) R(t) dt

0

—lo,t, 01,0 42
at|a7 » 01, 2) ( )
Hence, the integral (36) can be transformed into a line-

integral in parameter space,

Yaa(C, 61, 82) :/dR- (o, R.51, 621V g, R, 51, 65).
C
(43)

In Section 4 we shall consider closed paths C and trans-
form (43) into a surface-integral. From this we will de-
rive the geometric flux densities that will turn out to be
extremely useful for visualisation purposes of geometric
phases.

However, numerical calculations of geometric phases
for a given parametrised field configuration can be per-
formed quite easily by using (36). Introducing the local
matrix elements of the time derivative,

Zs(R(1).61,62) = (o, R(1),0

61752| |ﬁa ()751752)5

(44)
the geometric phase (36) reads

t
Yaa(t,61,82) = i / dt' 2, (R(t'), 61, 65).
0

(In the notation of I we have for 70 = T, ana = i2
see (1.28)).

In order to study PC and PV contributions to the ge-
ometric phases separately, we use perturbation theory to
expand the atomic states in powers of the PV parame-
ters d1,2. This is discussed in Appendix C. We find with
(C.36)—(C.40) for the matrix elements (44) for 8 = «

Do R(1),61,82) = Dpc au(R(1)
+ DY aa(R(E) + 5225 Lo (R(1) + O(82),  (46)

where (0(62) is the short-hand notation for O(6%, 3, §102)
and

Do as(B(D) = (0 RW)| 2130, R(D),
<4S¢,M<R<t>>@p0 a(RI(D))

(45)

=)’

(47)

(i) _ )
QPV,aa(R(t)) - Z E(a(o),R(t)) ( ©) R(t))

o alet
Docony(RI)AS; . (R(E))
E(a©), R(t)) — E(y, R(1))

(48)

(49)

M3, o (R(D) = (00, R(1)LE 1 R(1),
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Here, |a(?, R(t)) and E(a®) R(t)) are the eigenstates
and eigenvalues of the mass matrix, obtained from (22)
by setting d; = 63 = 0,
4(R(t)7 0) = 4(R(t)7 1 ) 62)‘51=52:O
— My~ D-E(t) - - Bl)

From (45)—(49) we obtain the PC and PV contributions
for the geometric phases,

(50)

Yoo (t; 51; 62) = YPC,ax (t)
+ 51'YPV aa(t) + 52’YPV aa(t) +0O(67),
(51)

TpCaa(t) = / NN () (52)

Weall) =1 [ 2 (RO, (=1.2). 63)
0

4 Geometric flux densities

In the following we always consider a closed path C in
parameter space.

The direct evaluation of (51)—(53) is the easiest way
to obtain numerical values of geometric phases for a given
path. The problem is to find suitable paths in parameter
space that maximise PV or PC geometric phases while
keeping the decay of metastable states to a minimum. In
this section we will introduce geometric flux densities in
order to get a visualisation and a better understanding
of geometric phases. We will also discuss our numerical
results for PV geometric phases at the end of the section.

By using the generalised Stokes’ theorem the inte-
gral (43), for a closed path C, can be transformed into
a surface-integral in parameter space. The detailed calcu-
lation can be found in Appendix C and gives (see (C.30))

/ TE(R) - df® + / TB(R) . df®
F

/ TEB(R).
i

'Yoza

(54)

Here, F is a two-dimensional surface in the parameter
space R with C = 0F.

Thus, the geometric phases can be written as a sum
of three integrals. The first integral is evaluated in the
space of electric field strengths, the second integral in the
space of magnetic field strengths and the third in the full
six-dimensional parameter space. The integrands J ((ﬁ;) (R)
and J gBa)(R) are three-dimensional vector fields in the
spaces of electric and magnetic field strengths, respec-
tively. They can be interpreted as geometric flux densities
and are a useful tool for visualisation and understanding
of geometric phases as we will demonstrate below.

The geometric flux densities can be split into PC and
PV parts by using perturbation theory. The details of this
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calculation can be found in Appendix C.3, where we have
used only one combined PV parameter ¢ (see (C.31)),

6= (62 + 62)V/2, (55)

From the PV geometric flux density in electric-field space
(C.48) we can easily derive the nuclear spin independent
and dependent flux densities. We obtain from (C.46)-
(C.48) the geometric flux densities in electric field space as

T (R,61,85) = 75 9(R)

Y XeTeY YN
+ 0T e (R) + 07350 (R),  (56)
Tien’ (R)
i is"l ZDzaﬁ(R)Djﬁa(R)_(i(_)j)
1] 2
255 iza (B9, R) - E(B"), R))
(57)

je(ii\;) (R) - i Z €ije Z (Dz ozﬂ —%,j,ﬁa(R)
2] 1 B#«a

+ DY o5 (R)DS5.(R) — (i = j))
x (E(a<0>,R) - E(5<0>,R))2>, (58)

for £ = 1,2,3. Here the matrix elements of the electric
dipole operator enter. For DPC(R) see (C.44). The two
PV contributions to the electric dipole operator follow
from (C.45) and read

M) . (RDVS(R)
E(a(o) 3 R) - E(’Y(O)a R)

2 F
V#B

D% aB(R) = Z
g5alst

DYS(R).4)4(R)

oy
(ﬁ(0)7 R) - E(7(0)7 R)

(59)

for »x=1,2.

Similar results follow for the geometric flux densities in
magnetic field space by making the replacements £ — B
and D — p in (56)—(59).

We will restrict ourselves in the following to the case of
constant magnetic field. We are then dealing only with the
three dimensional electric-field-strength parameter space.
Correspondingly, the closed path C and the surface F with
C = OF refer to this space. The geometric phase (54) reads
then

Yaa(C) = / TJE(R
]_‘

We will now study J (5)( R) in some detail for the
metastable states of hydrogen and deuterium. The numer-
ical calculation of these vector fields is done for magnetic

(for B = const). (60)
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Fig. 4. The PC geometric flux density field of the hydrogen
state |10) = |2§1/2,1,O,£,B = 1mT) in electric-field space.
The diagram on the Lh.s. shows the real parts of the flux den-
sity vectors, the diagram in the middle shows the imaginary
parts. The diagram on the r.h.s. indicates the position of the
plotted plane in electric field space.

fields pointing in 3-direction. We show first some examples
of flux density fields in electric-field space. In Figures 3
and 4 the PC flux densities of the hydrogen states with
a € {9,10} are shown. Rotational invariance of the fields
around the &3-axis is indicated here, as the plots of the
&1-Es-plane are identical to the plots of the £-E3-plane.
In Figure 3 a toroidal structure of the flux density field
shows up, whereas in Figure 4 a source and a sink can
be seen. The corresponding plots for the other metastable
hydrogen and deuterium states look very similar and can
be found online [17].

Figure 5 shows the nuclear spin dependent PV flux
density of the hydrogen state |9) = |2§1/2, 1,1,€,B) in
the &1-Es-plane for £5 = 0. The solenoidal character and
the cylindrical symmetry of the flux density can be seen.
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Fig. 5. The nuclear spin dependent PV flux density field of
the hydrogen state |9) = |2§1/2, 1,1,€,B = 1mT) in the &;-
Ex-plane with £ = 0. The figure shows from left to right the
real and imaginary part of the flux density and the location of
the plane in electric field space.
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Fig. 6. Two example paths for a purely PV geometric phase,
assuming a constant magnetic field in 3-direction.

Many similar plots for different values of £3 and all other
metastable hydrogen and deuterium states can also be
found online [17].

A study of many vector plots shows that J&:XC) (€, B)

has only radial and 3-components whereas J f&i‘” (€,B)
(5 = 1,2) has only an azimuthal component. At least, this
holds to the accuracy of the numerical calculations in all
cases studied so far.

Furthermore, the vector plots directly confirm the
PC and PV character of the vector fields J &) (€, B)

and Jgf’fav) (€,B), (3>r = 1,2). This is discussed in Ap-
pendix C.3, see (C.64) and (C.67), respectively. The plots
also show that in all cases studied so far the PV vector
fields in electric field space are source free, that is we have,
to our numerical accuracy,

Ve JE(E.8)=0

PN

(61)

for s = 1,2, whereas the PC flux fields can have sources
and sinks.

These vector field plots show that the PC and PV flux
densities are orthogonal to each other and that they, fur-
thermore, make it easy to choose closed paths in param-
eter space which maximise PC or PV geometric phases,
respectively. Two examples of closed paths in parameter
space that will give purely PV geometric phases are shown
in Figure 6. The path (a) — consisting of two-point sym-
metric loops — gives a purely PV geometric phase for an
arbitrary constant magnetic field since the PC contribu-
tions of the two loops cancel each other due to (C.64),
whereas due to (C.67) the PV contributions will be the
same for each loop and add up.
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The PV geometric phases of all metastable hydrogen
and deuterium states have been calculated numerically by
evaluating the surface-integral (60) over the PV geometric
flux densities (58) for a rectangular surface as shown in
Figure 6b. In detail, we define the surface F by

F = {8; £1=0,& €[0,250V/cm],

&3 € [~125V/em, 125V /em] }  (62)
and use a constant magnetic field
B =(0,0,1mT). (63)

We have also evaluated the line-integrals (53) along dF
numerically in order to cross-check our results which are
listed in Table 1. We find that the results from both meth-
ods match nicely and give an indication of the accuracy of
the numerical calculations. The total PV geometric phases
are (see (51))

TPV,aa = 61713\/ ao + 52713\/ aa? (64)
with the PV parameters d;2 taken from Table 3. The
YPV,aq are listed in Table 2.

We will now discuss the results shown in Table 2. First
of all, the metastable hydrogen states |9) and |10) have
the largest PV geometric phases. In Figure 7, the corre-
sponding real parts of the nuclear spin dependent fluxes
.72£aiv)( B) - df®) /|df®)| are shown. They represent
the domlnant contributions to Ypv,aa for these states. The
areas of the largest contributions to the flux are centred
around & = 0 and extend to higher values of &. In fact,
the PV geometric flux can be increased by one order of
magnitude for a surface with & € [0,1000V/cm], but
then, of course, (27) no longer holds for every point on
that surface and the mixed 2S states can in general no
longer be considered as metastable, see Appendix B.

The quoted uncertainties in the results of Table 2 only
take into account the errors of the PV parameters d; o
given in Table 3. The numerical uncertainties have been
neglected but can be estimated roughly by comparison
of the results for the surface and the line-integration and
seem to be around a few percent. The only PV geomet-
ric phase for which the surface- and the line-integration
results do not coincide within 1o is the result for the
metastable deuterium state [16) = [2S; o, %,—%,E,B).
The small uncertainty due to 412 in ypv 1616 is due to
its small nuclear spin dependent contribution ,71(3’2\)/,16 16
(see Tab. 1). For all other hydrogen and deuterium states

the contribution from ’71(32\)/,(}06

71(3\3 oa 1D YPV.aa- This, together with the fact that &
for deuterium is consistent with zero and has a statis-
tical error larger than 500% (see Tab. 3), is the reason
for the large uncertainties due to d12 (up to 50%) of all
metastable deuterium states with o # 16.

In Figure 8 we show the real parts of the PV flux den-
sities for the deuterium states |13) = |2S1/2, 3.3 €,B)
and |16) = |2S1/2, 3,—-3,€,B). Figures 8a-8c are simi-
lar to the corresponding hydrogen flux densities shown in

dominates over that from

Table 1. Numerical results of PV geometric phases for
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metastable hydrogen (a) and deuterium (b).

(1)

(a‘) R ryPV o
a |25y, F, F3) surface line
9 12Si/2,1,1)  —0.197 +0.029i —0.192 + 0.029i
10 12S1/2,1,0) 0.144 — 0.019i  0.144 — 0.019i
11 [2S1/2,1,—-1)  0.039 — 0.008i  0.035 — 0.007i
12 [28,/,0,0) 0.034 — 0.006i  0.033 — 0.005i
(2)

R ryPV oo
a |25y, F, F3) surface line
9 [2S1)2,1,1)  —3.055+0.310i —3.055+ 0.310i
10 12S4/2,1,0) 4.208 — 0.3871  4.213 — 0.387i
11 [2S1/5,1,—1) —0.989 + 0.058i —0.994 + 0.059i
12 28,/2,0,0)  —0.161+0.018i —0.161 + 0.018i
(b) YoV aa
a |2Sy,s, F, F3) surface line
13 [2S1/2,3,3)  —0.138 +0.022i —0.133 + 0.021i
14 [281/2,3,1)  —0.077 +0.012 —0.073 + 0.012i
15 |281/2,2,—3) —0.012+0.002i —0.011 + 0.002i
16 [2S1/2,2,—-32)  0.092 —0.015i  0.088 — 0.015i
17 12812, 34, 2) 0.129 — 0.020i  0.125 — 0.020i
18 281/, 5,—%)  0.037 —0.006i  0.035 — 0.006i

2)

R ’VPV,aa
a |2Sys, F, F3) surface line
132812, 3,3) —20.00 +2.25i —20.03 + 2.25i
14 [2S;)s, 30 11.64 — 1.30i 11.67 — 1.30i
15 [2Sy)s, ) 13.44 — 1.46i 13.46 — 1.46i
16 [2S1/2,3,-2) —0.24-0.04i —0.24 —0.04i
17 [2S1)0,3,%)  —11.54+1.351 —11.56 + 1.35i
18 [281)2,3,-3) 6.70 — 0.80i 6.72 — 0.80i

Table 2. The total PV geometric phases (64) for the
metastable states of hydrogen (a) and deuterium (b). The er-
rors quoted are discussed in the text.

(a) VPV, aa [1078 rad]

surface line
9 —20.96(59) + 2.10(6)i  —20.97(59) + 2.10(6)i
10 29.23(81) — 2.67(7)i  29.26(81) — 2.67(7)i
11 —7.07(19) + 0.41(1)i —7.09(19) + 0.43(1)i
12 —1.23(3) +0.141(3)i  —1.23(3) + 0.141(3)i
(b) VPV, aa (1071 rad]
«a surface line
13 —8.7(3.4) + 1.34(38)i —8.4(3.4) + 1.32(38)i
14 —4.1(2.0) +0.66(22)i  —3.9(2.0) + 0.64(22)i
15 —0.32(2.3) +0.07(24)i —0.23(2.3) + 0.06(25)i
16 5. 404( 6) — 0.876(8)i 5. 128(38) — 0.856(7)i
17 7.2(2.0) — 1.13(23)i (2 0) — 1.12(23)i
18 2.3(1.1) — 0.37(13)i 2(1.1) — 0.36(14)i
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Fig. 7. The real parts of the projected, nuclear spin dependent
flux densities Jgﬁ;iv)(&B) ~df®) /|df®)| of the metastable
hydrogen states |9) (a) and |10) (b). Brighter areas correspond
to a larger absolute value of the geometric flux. The solid black
lines are contour lines for the levels shown on the right hand

sides of the density plots.

Figure 7. Only Figure 8d, which shows the nuclear spin
dependent PV flux density of |16), looks different. Com-
pared to Figure 8b one can see a difference of two orders
of magnitude between both flux densities. Furthermore,
Figure 8d shows a change of sign between the maximum
and minimum of the plotted flux density values. The ge-
ometric flux density also increases both in positive and
negative &3-direction.

5 Conclusions and outlook

In this work we have shown that PV geometric phases
in the lightest metastable atoms, 2S hydrogen and deu-
terium, exist. We have considered adiabatic changes of the
electric field along suitable closed paths C with a constant
magnetic field in order to avoid degeneracies of atomic
energy levels. The metastable states of hydrogen and deu-
terium indeed pick up non-zero PV geometric phases in
this way.

The geometric flux densities provide us with a good
way to visualise geometric phases as fluxes through areas
F in parameter space with C = dF'. In this way we could
see how to choose the path C in order to get only a PC or
only a PV geometric phase.
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Fig. 8. The real parts of the two PV contributions to
the geometric fluxes of the metastable deuterium states
13) = 12S1/2,2,3,€,B) (figures (a), (b)) and [16) =
12S1/2,2,—3,&,B) (figures (c), (d)). In (a) and (c) the nu-
clear spin independent, whereas in (b) and (d) the nuclear spin
dependent contributions are shown.
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We have then studied numerical values of geometric
phases for a closed rectangular loop in electric-field space
(see Fig. 6b) where only PV and no PC phases occur. The
PV phases have been calculated numerically both from
the surface and from the line-integrals, see (60) and (53),
respectively. The results agreed within the numerical un-
certainty. The resulting PV geometric phases are listed in
Tables 1 and 2. The geometric contributions 'yé,l\f()m can
be large, see Table 1. The smallness of the results for the
total PV geometric phase in Table 2 is solely due to the
smallness of the PV parameters d; 2. It remains to be seen
if such small effects can be enhanced by suitable iterations
or other means in order to make them large enough to be
measurable.

Even if the results for PV geometric phases presented
in this paper are numerically small we find that they have
an interest of principle. They show that geometric phases
can carry information from parity violation in atoms. This
was first discussed in [18] and has now been investigated
in detail for the 2S states of hydrogen and deuterium.

There are numerous things left to be studied in the
future. So far, we have only investigated Abelian geo-
metric phases for constant magnetic fields. The investi-
gation of Abelian geometric phases for varying magnetic
field strengths is a challenging task for further studies.
Furthermore, non-Abelian geometric phases could reveal
interesting new features of PV geometric phases.
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useful discussions and W. Wetzel for his continuing support
concerning the computational aspects of this work. They also
thank W. Bernreuther, D. Bruf}; and K. Jungmann for en-
couraging comments. This work was supported by Deutsche
Forschungsgemeinschaft under project No. NA 296/3-1.

Appendix A: Values for quantities related
to n = 2 hydrogen and deuterium

In this appendix we collect the numerical values for the
quantities entering our calculations for hydrogen and deu-
terium states with principal quantum number n = 2. We
specify our numbering scheme for these states and give the
expressions for the mass matrices at zero external fields,
and for the electric and the magnetic dipole operators.
In Table 3 we present the numerical values for the
weak charges Qg,‘), » = 1,2, the quantities Agq, the
Lamb shift L = E(2S;/5) — E(2P;3), and the fine struc-
ture splitting A = E(2P3/3) — E(2P;/3). The ground
state hyperfine splitting energy is denoted by A. We have
A = E(1Sy)5, F = 1) = E(1Sy/2, F = 0) for hydrogen
and A = E(1Sy/3, F = 3/2) — E(18; 2, F' = 1/2) for deu-
terium. The n = 2 states of hydrogen and deuterium in
the absence of P-violation and for zero external field are
denoted by |2L;, F, F3), where L, J, F and F3 are the
quantum numbers of the electron’s orbital angular mo-
mentum, its total angular momentum, the total atomic
angular momentum and its third component, respectively.
The quantum numbers S for the electron spin and I for
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Table 3. Values of parameters for numerical calculations.
The weak mixing angle in the low energy limit, sin®dw =
0.23867(16), was taken from [22]. The uncertainty in 6; is dom-
inated by the uncertainty of sin? 9. The values of Qg,gv) and J2
for deuterium are consistent with zero, according to the value
of As. The uncertainties in Q(MQ,) and 2 for hydrogen are re-
sulting from the errors of the weak mixing angle and As in
equal shares.

H Ref.

Z 1

N 0

I 3
QW (z,N) 0.04532(64) (11)
51(Z,N) —2.78(4) x 1072 (20)
Au(Z,N) — Ad(Z, N) 1.2695(29) 9]
As(Z,N) 0.006(29)(7) [19]
QY (z,N) —0.1145(31) (12)
52(Z,N) 7.04(19) x 1073 (20)
L(Z,N)/h 1057.8440(24) MHz  [20]
A(Z,N)/h 10969.0416(48) MHz  [20]
A(Z,N)/h 1420.405751768(1) MHz  [21]
2D Ref.

Z 1

N 1

I 1
QW (z,N) —0.95468(64) (11)
51(Z,N) 58.59(4) x 107'3 (21)
Au(Z,N) — Ad(Z, N) 0 9]
As(Z,N) 0.012(58)(14) [19]
QY (z,N) 0.0005(26) (12)
52(Z,N) 0.03(17) x 1072 (21)
L(Z,N)/h 1059.2330(26) MHz  [20]
(Z,N)/h 10972.0355(48) MHz ~ [20]
]

A(Z,N)
A(Z,N)/h 327.384352522(2) MHz  [21

the nuclear spin are omitted, since these are fixed quanti-
ties for each atomic species. In the following the ordering
of the atomic states in the matrix representations of op-
erators is according to decreasing F3, F', J and L.

In Table 4 we give the numbering scheme for the states
which we consider. For electric field £ and magnetic field
B equal to zero we have the free 2S and 2P states. We
write L, P, S since these states include the parity mixing
due to Hpy (1).

Consider first atoms in a constant B-field pointing in
positive 3-direction,

B=DBes, B>0. (A1)
The corresponding states |2f/J, F, F5,0, Bes) are obtained
from those at B = 0 by continuously turning on B in the
form (A.1). Of course, for |B| # 0, F is no longer a good
quantum number. Here it is merely a label for the states.

We now choose a reference field Bret = Breres, Brer >
0, below the first crossings in the Breit-Rabi diagrams, for
instance Biof = 0.05 mT. We define the states |2IA/J, F F3,
&, B) for arbitrary B fields in the neighbourhood of B, as

the states obtained continuously from |2f/J7 F, F5,0, Byet)
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Table 4. The numbering scheme for the atomic states of hy-
drogen and deuterium.

Metastable states, the adiabatic theorem and parity violating geometric phases II

hydrogen deuterium
o« |2L;,F, F3, &, B) o |2L,;,F,Fs,E, B)
1 |2P3/2,2 2 £,B) 1 |2P3/2,2, 5€,B)
2 |2P3/2, , 1,E,B) 2 |2P3/2,2, 3. €,B)
3 |2P3/2,2 0 £,B) 3 |2Ps0,2, 1,€,B)
4 |2P3/2,2 —1 £,B) 4 |2153/2, 2. -1¢eB)
5 |2P3/2, ,—2,E,B) 5 |2P3/2,2,—%,£,B)
6 |2P3/2, , 1 5 B) 6 |2P3/2,2,—g,£,8)
T+ |2P3/2,1, 0,&,B) 7 |2P3/2,2, 3.€,B)
8  [2P3)0,1,-1,E,B) 8  [2P32,3, 3,€,B)
9 |2P3/2,2,7%,5,B)
10 |2P3/2,2,—§,£,B)
11 |2Ps)2, 5, 3,€,B)
12 |2Py,1,-1,€,B)
9 [281)2,1, L,E,B) 13 |2S,5,3, 2,€,B)
10 |2sl/2,1, 0 £,B) 14 |2S,5,3, 1,€,B)
11 [281)5,1,~1,€,B) 15 (2812, 5,—5,€,B)
12 12S,5,0, o 5 B) 16 [2S1)2,2,-3,€,B)
17 12S12,%, 1,€,B)
18 [2S1/2,3,—3,E,B)
13 |2Py)5,1, 1,€,B) 19 2P, 3, 2,€,B)
14 |2Py5,1, 0,&,B) 20 2Py, 3, 1,€,B)
15 |2Py)s,1,—1,E,B) 21 |2F’1/2,2,—§,£,B)
16 [2P/5,0, 0,&,B) 22 |2P1/2,2,—§,5,B)
23 [2P1)2, 3, 3,€.B)
24 2Py, 1, -1 €,B)

by turning on £ and (B — Byet) as AE and A(B — Biet),
respectively, with A € [0, 1]. Then both F' and F5 are only
labels for these states and no longer good quantum num-
bers.

Tables 5-10 are supplied as supplementary online ma-
terial and show the non-zero parts of the mass matrix .#,
for zero external fields, of the electric dipole operator D
and of the magnetic dipole operator p for the n = 2 states,
Tables 5-7 for hydrogen, 8-10 for deuterium.

Appendix B: The adiabaticity condition

In this appendix we discuss the conditions, which have to
be satisfied in order to apply the general results of I to the
n = 2 systems of hydrogen and deuterium.

The condition to have a group of metastable and a
group of fast decaying states was already discussed in
Section 3. We found in (27) that we have to require
€] < 250V/cm for |[B| = 0. Turning on the B field
(IB < 5mT|) one finds that the lifetimes of the n = 2
states do not change substantially.

Now we come to the question how slow the variation
in time of the €& and B fields ought to be for the results
of I to be applicable. In I we worked, for mathematical
convenience, with a reduced time 7 and a total time T'.
We studied the limit T" — oo.
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Consider, for example, the two-state system of Sec-
tion I.4. The leading terms for ' — oo are given in (I1.50)
and (I.51) and, with an estimate of the first correction
terms, in (I.A.14) and (I.A.15). The first correction terms
should be small and thus we should require

2012

_— 1 B.1
TAFmin <5 ( )
deracan

_— 1 B.2
TAFmin <5 ( )

2621

_— 1 B.3
T Al & (B3)

where c12 and cg; are defined in (I1.45) and (I.A.2), respec-
tively.

Now we revert to time ¢ instead of the reduced time
7. That is, we set T' = 79 in the following, see (1.3). It is
clear that the typical observation time will correspond to
the lifetime of the 2S states, that is, we can set

T ~ TS. (B.4)

From the definitions (1.28) and (1.45) we then find
c12 = Torgltax la12(2)], (B.5)
|axa(t)] = |(L,1 t|1 2 12,0)]. (B.6)

Now we insert for the state |1,t) the 25,5, for the state
|2,t) the 2P, /5 states. We can then estimate the allowed
speed of variation of the electric field using perturbation
theory with perturbing term D - §€ in the mass matrix.
We get in this way for constant magnetic field

2Py /0, E(t + 6t),B) = [2Py 5, E(t), B)
1

+ 281 /2, E(t), B
E(2P1/2)7E(2SI/2)| 172, €(1), B)

x (2512, €(1), B| (~D) - (E(t + 6t) —
X |2P1/2a 6( )a B)v

£(1))
(B.7)

9P 2, (1), B) = 112512, £(1), B)
< (25,2080 - 2 op, 1, £0).B), (B3)
()] = | 128,72, 20). 81D - 20 op, . £(1), B)
~ era(l) ‘@‘ (B.9)

For hydrogen and deuterium we have (see (3.16) and (3.19)
of [7])

erg(l) . 1
= . &= 477.3V/cm. B.10
7 NeTD 0 / (B.10)
Thus we get
1 |0E()
)| = — . B.11
(] = - | 250 (B.11)
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For the decay rates we have

Alpin 2 I'p — I's &2 I'p. (B.12)

Inserting all this in (B.5) and (B.1) leads to the require-
ment

2612 ~ 1
T AFmin N

1
Tp 01 & | ot
OE(1)
ot

t)‘

= Tp max ——
te[0,7) &

(B.13)

The same estimate is obtained from (B.3). From (B.2) we
get

4ec19c91 2c12 2c91
o = L' Alin
TAFmin (TAFmin) (TAFmin)
0E(t) 1 |0&(t)
o — (=N (7 — =
(TP refor) & | Ot D ( relor) & | Ot
< 1. (B.14)
Both conditions, (B.13) and (B.14), are satisfied if
1 |0&(t)
—-— |—= B.1
tg[loaT] E | Ot ‘ < TP (B.15)
and
1 |9E(t) 1
— | —= - = —. B.16
ielor) & | ot ‘ T (B.16)

Since we always have 7¢ > 7p we see that (B.16) already
implies (B.15).

Next we want to estimate the allowed rate of change for
the magnetic field B(¢). Similarly to (B.9) we can estimate
here

—~—

(2812, £(2), B(t) e - 0B(t)

ot

S

la12(t)| =

X [2P1/2,E(1), B(1)))|. (B.17)

For the free 2S and 2P states — disregarding P viola-
tion — the matrix element in (B.17) vanishes. But we are
considering states in an electric field where there is Stark
mixing. For electric fields satisfying (27), |€] < 250 V/cm,
this mixing is at most O(1). We shall thus estimate from
(B.17)

ps |0B(1)
) <= |——= B.18
(0] £ 12|20 (B.13)
In analogy to (B.10) we define By by
up ~ 1
Es ~ , B.19
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which gives
By = 43.65mT. (B.20)

Repeating the same arguments as made above for the elec-
tric field we find the conditions

1 |0B@)| 1
—_——= — B.21
B g o] < (B2l
and
1 |oB@®)| 1 1
- | —Z -~ B.22
R e \ T (B.22)

Here again (B.22) implies (B.21) since we have 7g > 7p.

We summarise the adiabaticity conditions for the elec-
tric and magnetic fields found as follows. The evolution
of the — of course mixed — 28 states will decouple from
that of the 2P states if the electric field satisfies (27) which
guarantees for the lifetimes 7¢ > 7p and if the rate of
change of the electric and magnetic fields normalised to
& and By, respectively, is smaller than the inverse life-
time T§1 of the 28 states.

Appendix C: Geometric phases and flux
densities

In this appendix we will give the details of the calcula-
tions that lead to the results shown in Sections 3 and 4.
In Section C.1 we consider a closed path in parameter
space and transform the integral of the geometric phase
into a surface-integral using differential form algebra. In
Section C.2 we introduce geometric flux densities. In these
sections we discuss general properties of geometric phases
and, therefore, suppress the PV parameters in the labels of
the states etc. In Section C.3 we use perturbation theory
to identify the PC and PV contributions to the geometric
phase and we derive the geometric flux densities that are
used in Section 4 to visualise the geometric phase contri-
butions.

C.1 The geometric phase as surface-integral
in parameter space

Let R = (Rl, .. .,RT) be the parameter vectors and C
a closed curve in an r-dimensional parameter space R.
Let #(R) be a — in general non-Hermitian — matrix
function over R with non-degenerate eigenvalues FE(«, R)
(e=1,...,N) for all R €C.

The Abelian geometric phase (43) in parameter space
reads (omitting the labels 47 2)

Yaa(C) = f iR (. RiVglo.R),  (C.1)
C

and can be written as an integral over a differential 1-form

7aa(c) = 17€(JR|CI|O&,R>, (02)
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where the exterior derivative d is defined as

. )
d=> dR; . (C.3)
i=1 OR;

The exterior product (wedge product) of two 1-forms gives
a 2-form. The wedge product A is antisymmetric, that is

dR; A dR] = *de NdR;. (04)

One can easily prove the following relations
dR; NdR; =0, (C.5)
dd = 0, (Poincaré lemma). (C.6)

For an introduction to differential forms see [23]. As was
already pointed out by Berry in his original work [24],
for a parameter space of dimension r > 3 one has to use
the generalised Stokes’ theorem to transform the integral
(C.2) into a surface-integral. The generalised Stokes’ the-
orem gives

Yoal@) =i 4 (o Rldl0.B) =i [ dlo.Rldo. )
- (C.7)

where F is an arbitrary surface in parameter space
bounded by the curve C and lying fully in the regular-
ity domain of d(a, R|d|a, R). From the Poincaré lemma
(C.6) and the asymmetry of the wedge product (C.4) we
obtain for the integrand in (C.7)

d(o, Rld|o, R) = (d(a,R|)dlo, R)

=" (d(@R|)|8, R) A (3, Rld|a, R)
B8

== (@ RIdIg, ®) A (5. Rlda, R).
e (C.8)

Here we have used the completeness of the eigenstates of

A (R),

1=> |8, R)(B. R, (C.9)
B
and the following relations, which are easy to prove,
(a.R|d|3, R) = —(d(o, R|) |3, R), (C.10)

0= ((oZmdm,R)) A (o, Rld|a, R). (C.11)

Next we study the matrix elements (5/71/%|d|04, R). For each
parameter vector R we have

A (R)|a, R) = E(a, R)|r, R), (C.12)
(C;-R|4(R) = (O;jﬂE(Oz,R), (C.13)
(¢ =1,...,N).
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Applying the exterior derivative to (C.12), multiplying

from the left with (5/71/?,| and using the non-degeneracy
of eigenvalues (which we supposed) we obtain for § # «

(6, Rld|o, R) = (Ofdf)mg(ﬁg 7 (C.14)
with the 1-forms
(Al (R)s0 = (5, R (dL(R)) 0, B).  (C.15)

Using (C.2), (C.7), (C.8) and (C.14) we finally get

_ N [ dL(R))ap N AL (R))50
Yaa(C) = Bz:_l/}_ (E(Oz,R)—E(ﬁ,R))Q )

BFa

(C=0F; a=1,...,N). (C.16)
This is the geometric phase in the case of a non-Hermitian
mass matrix, written as a surface-integral in parameter
space. The result (C.16) is completely analogous to that
in [24] for Hermitian Hamiltonians. However, in the case
of a non-Hermitian mass matrix, the geometric phase will
in general be complex and therefore contribute to the ex-
ponential decay of the corresponding eigenstate.

C.2 Geometric flux densities

The mass matrix .Z (R) for an atom in an external electric
(€) and magnetic (B) field has the form (see (22)—(24))

MR)=My—D-E—p-B, (C.17)
where the parameter vector R is
R = (R1,...,Rs) =(&1,&2,E5,B1,B2,B3) . (C.18)

The exterior derivative of the mass matrix (C.17) is

dM(R) = —D-d€ — - dB. (C.19)

Thus, the matrix elements (C.15) of d.Z(R) are

(dtl(R))ap = (o, R|(d.£)|5, R)
= —(a, R|D|B, R) - d€ — (o, R|p|B, R) - dB
=—D,45(R)-d€ — p_,(R)-dB. (C.20)

The 2-form occurring in (C.16) is

(dM(R))op N(dL(R))po =
3
> (iR dE + g, (R)dB;)

4,J=1

A (D o R)dE; + 1, (R) dBj) .

=—J

(C.21)
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Expanding the wedge product in (C.21) and using (C.4)
leads to three different contributions, proportional to d&; A
d€&;, dB; N dB; and d&; A dBj, respectively. The geometric
phase (C.16) can then be written in the form

aal€) = [ 2ER) + [ 18R+ [ W)
(C.22)
with the 2-forms
Iég) D; 05(R)D =, ga(R) = (i < j)
Bz;ﬁ(:xz;l (E(aa R 6; ))
X d&; N\ dgj, (C.23)
ZZ jﬁa(R)_(i(_)j)
ﬁ#m j=1 ( o, R) — E(B, R))2
x dB; A dBj, (C.24)
TEBR Z Z D; 4R K BQ(R)*ﬁj7aﬁ(R)Qi,5a(R)
BFai,j=1 E(aa R) - E(B, R))2
X d&; N dBJ (C25)

For general external field configurations, the geometric
phase (C.22) will get non-vanishing contributions from all
three surface-integrals.

Consider now a closed curve C in parameter space with
constant magnetic field. If it is not prevented by singulari-
ties of the integrand we can choose also F to correspond to
this constant magnetic field. Then only the integral over

I&? (R) will be different from zero. The 2-form I(gf;)(R)
(C.23) is a product of two antisymmetric tensors. Intro-
ducing

3
dfle) = Z eije dE; N dE;, (C.26)
i,j:l
£
Jéam)
i Qi,aﬁ(R)Q ',ﬁa(R) - (Z A .7)
3 Z Eije Z . 2 )
ij=1 B (E(Oéa R) - E(B, R))
(C.27)
(6=1,2,3)
we can write (C.23) as a scalar product,
IER) = TER éiL ), (C.28)
and obtain from (C.22)
Yaa(C) = / TE(R)-df®. (C.29)
f

Obviously, df(€) (C.26) is the oriented surface element
in the 3-dimensional space of electric field strengths and
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J Sfa) (R) can be interpreted as a geometric flux density
field in the space of electric field strengths. The geometric
phase for a given closed path C in the space of electric field
strengths is given by the flux of the vector field J (E)( R)
through C. The graphical visualisation of the flux density
field (C.27) turns out to be a very useful tool for choosing
closed curves C in parameter space with desired properties,
for instance minimising the decay rate for the metastable
states along with maximising the geometric phase.

For a closed curve C in parameter space with con-
stant electric field the geometric phase v44(C) can be im-
plemented in a similar way. We only have to replace in
(C.26) to (C.29) € by B, the 2-form Z.E) (R) by the 2-form
78 (R), and D by p. For general external field configu-
rations where both £ and B vary we still can define the
flux density fields JE)(R) and J®)(R) and write the
geometric phase (C.22) as

Yo(C) = /f TE(R) - df© + /f TE(R) - df®

(€,B)
+ /f IEB)(R) (C.30)

with Z.5®) (R) from (C.25). However, visualisation in a
single three dimensional parameter space is no longer pos-
sible.

C.3 P-conserving and P-violating flux densities

In this section we discuss the PC and PV contributions
to the flux densities and geometric phases. Therefore, the
dependence of quantities on the PV parameters is kept
explicitly in this section. The mass matrix for the atom in
external fields and including P-violation is given in (22).
For ease of notation we define

5= (52 +02)'2, (C.31)
S
Mpy = Z Eﬂ%’zﬁ (C.32)

=1

where d1 2 are given in (19) to (21). We can now write (22)
and (C.17) in the form

Mo (5)
A (R, )

=M+ 6 Mpv, (C.33)
=My+0Mpy—D-E—p-B

where 4 is the mass matrix for zero external fields and
no PV contribution. We use perturbation theory to ob-
tain a power series expansion in the small parameter ¢
for the eigenstates of .#Z (R, d). The details of the formal-
ism which applies to non-Hermitian mass matrices can be
found in [7], Appendix C and [16], Appendix C.

The perturbation series expansion of the eigenvalues
of #(R,J) reads

E(a, R,0) = E(a\", R) + O(6?). (C.35)
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There are no dé-linear terms in these eigenvalues due to
time reversal symmetry invariance, see Section 1.3 in [16].
The perturbation series expansion for the left and right
eigenvectors of .#Z (R, d) reads

la, R, 6) = |a'?, R) + §]aV, R) + O(5?), (C.36)
M (R)
(1) (0) —PV B
o, ) = %iw 0,R)-E(3©),R)
(C.37)
(@ R0 = (), R| + 6(aV), R| + O(%),  (C.38)
0. Rl = PV, (0)
A %E(MM,R%E(MO%R)W Bl
(C.39)

In zeroth order we are left with the eigenstates |o(?), R)
of the mass matrix Z (R, 0) of (C.34). In first order con-
tributions proportional to the matrix elements of . py,
occur which are defined as

ﬂpv,aﬁ(R) = (a/(%|ﬁpv|ﬁ(0)7 R). (C-40)

The geometric flux density (C.27) which has PC and PV
contributions, is given by

78 (R,6) =

i ws(R0)D; 5, (R, 6) — (i = j)
Qi,jzf”e ; (E(a, R) -~ E(3©), R))*
(C.41)

= 1,2,3). The matrix elements of the dipole operator
in (C.41) are

IGQ

D, ;(R,6) = (a, R, 5|D|B, R, 5) (C.42)

and by using (C.36)—(C.40) we obtain, to first order in 4,

D, ;5(R,5) = D5 (R) + 6D (R), (C.43)
D{f(R) = (o(9, RID|3"), R), (C.44)

Mpy o, (R)DVS(R)

PV _ PV,ay ~vB3
Qaﬁ (R) - g;a E(a(o),R) _ E(’y(o),R)

—a'y LLPV,yS

+ ;ﬁ 6<0 —Eoo . ©®
Y

Using (C.43) to (C.45), we are able to separate the PC and
PV contributions to the geometric flux density (C.41) and
find

T (R0 =TV R) + 675V (R),

Z | 2

2] 1 [3750(( (a(O) R)

(C.46)

£ aﬁ(R)D] ﬁa(R)i(ZH])

E(30), R))’
(C.47)

(8 PC)
2 ao

)
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JEPY)

l,oa

. 3
(R):%_Z Eije
» (Z

B#a

Dz aﬁ(R)D] ﬁa(R) + Dz aﬁ(R)Dj ﬁa(R)
(E(a©), R) - BE(3©), R))”

— (i j)). (C.48)

The corresponding results for the flux density field
TB)(R, ) follow from straightforward substitution of £
by B and D by p in (C.41) to (C.48).

We will now investigate the PC and PV character of
the geometric flux densities (C.47) and (C.48). We de-
fine the quasiprojectors for the mass matrix 4 (R,0) =
A (E,B,0) (C.34) as

POE B) =, € B)(a® & B| (C.49)

Here and in the following we write out R as (€, B), see
(40). With the completeness relation

l: ZE(QO)(£7B)

[e3

we obtain from (C.47) and (C.44)

Z emﬂ‘rl

3,7=1

(C.50)

£PC

\7213(&

(0)
BH#«a (E(a(0)787B)_E(ﬁ(0)7873))2
x D;PY(€,B) -

(i< 3)]. (C.51)

Consider now the parity transformation operator P de-
fined by

P: xx— —x

(C.52)

and its matrix representation P in the (n = 2) subspace

of atomic states,

B|2LJ5F5F3) = (_1)L|2LJ7F7F3)' (053)
With P we have

PzP' = -z, (C.54)
PP =1, (C.55)
PDP'=-D, (C.56)
PuP' = p. (C.57)

Thus, the mass matrix (C.34) satisfies for 6 =0

PM(EBOP =P (& € p-B)Pf

= M(— 8 B, O) (C.58)
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We will now use an argumentation analogous to the one
n [7], following equation (3.43). Assuming non-degenerate
eigenvalues of the mass matrix for the considered field
configuration, the quasiprojectors (C.49) are the residues
of the poles of the resolvent

(C.59)

1 B P (g, B)
ﬂ(ngaO) 751 B g E(a(0)7873) _g,

where £ is an arbitrary complex parameter. Applying the
parity transformation to the left hand side of (C.59) we
obtain with (C.58)

1 1
S » ) S
P 7EB o -l = Z(-€B0)—d
¥ PV (-€,B)
N — E(® & B)-¢

(C.60)

Of course this must be equal to the parity transformation
of the right hand side of (C.59), and we get

rOE B . PO(-€,B)
Eza:E(a(o)agaB)igg B ( 0)776’6)75'
(C.61)

Clearly, with our choice of B (see (A.1)) and our number-
ing scheme, Table 4, the states |a(?),€ = 0,B) are just
the states |2L;, F, F3,E = 0,B) which are eigenstates of
P with eigenvalue (—1)~. Turning on the electric field we
find from continuity arguments that with the numbering
scheme of Table 4 we have

E(a®,€,B) = E(©,-£,B), (C.62)
PPY(£,B)PI =PV (-£,B). (C.63)

By inserting the identity (C.55) between each dipole op-
erator and quasiprojector in (C.51) and by using (C.56),
(C.62) and (C.63) we find

T="EB) =TEO(-€.B). (C.64)

Thus, the PC geometric flux fields are indeed invariant
under parity transformation of the external fields,

P: (£,B) — (£, B). (C.65)

For the transformation properties of the PV geometric flux
density fields we use

Py Pl =M py (C.66)

and find with the same methods as for the PC flux density
fields the result

JEV (€. B) =-TEV) (-€.B). (C.67)

Similar relations can be derived easily for the flux densities
in magnetic field space,

TJEFO (€ B) = gEFI(-£,B), (C.68)
TEPV(£,B)=-FEV)(-€,B). (C.69)
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Finally, we consider the matrix elements of the time
derivative

Dy (R(0).0) = (0, R0, 0| 2|0, R(1).5), (C.70)

see (44). Inserting the expansions (C.36) and (C.38) we

get

D05(R(t),6) = Zpc ap(R(E) + 6Zpy op(R(1)) + O(6?),

(C.71)

where

Dpc ap(R(1) =

Dpv op(R(1)) =

(a0, ()I—Iﬁ(0 R(t)),
R(t )I—Iﬁ(0 R(t))

R(t )I—Iﬂ @, R(1)).
Now we consider a = 3. We have from (C.37) for all ¢

(C.72)
(a)),

+ (a0, (C.73)

(@@, R()laV, R(t)) = 0 (C.74)
which implies
O ro)ZLa® O r)ZLam _
(a ,R(t)lgla ,R(t)) + (« 7R(t)|§|a ,R(t)) =
(C.75)

Inserting this in (C.73) for @« = § and using (C.37) and
(C.39) we get

1
B0, R(1)) -

ZPV,aa (R(t)) = Z

aEale’

x {4pv,w( (1) (1O, Rt )I—I ©, R(t))

E(v©), R(t))

P

— (@@ R 2], R(t))ﬂpv,w(R(t))}- (C.76)

From
(0@, RO, R(t)) = b (C.77)
we get
N TEANG, N AN
(a(o),R(tﬂah , R(t)) + (Oé(O%R(t)l@l’V ,R(t)) =0

(C.78)
Inserting this in (C.76) and using (C.72) leads to

1
Doy ,aa(R(t) = #Za E(a© R(t)) — E(y), R(t))

{%PV a’y( (t))@PC,'ya(R(t))

+ zpcm(R(t))%pv,w(R(t))}-
C

(C.79)
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Splitting up 0 Zpy 4, (R(t)) into the contributions propor-
tional to d; and 2 we write

02y aa(R(E) = 0125 10 (R()) + 8220 o (R(E)).

(C.80)

Inserting here (C.79) leads to the results (48) and (49).
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In this supplement we give the expressions for the mass matrices at zero external fields, and for the electric and the
magnetic dipole operators.

Appendix A: Values for quantities related to n = 2 hydrogen and deuterium
Tables 5, 6 and 7 show the non-zero parts of the mass matrix M o for zero external fields, of the electric dipole operator

D and of the magnetic dipole operator p for the n = 2 states of hydrogen.
In Tables 6 and 7 we use the spherical unit vectors, which are defined as

ey = es, et = :F% (e; £iea), (A1)

where e; (i = 1,2, 3) are the Cartesian unit vectors. For e, the following relation holds:
el = —ex. (A.2)
Tables 8, 9 and 10 show the mass matrix M o for zero external fields, the electric dipole operator D and the magnetic

dipole operator p for the n = 2 states of deuterium.
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Table 5. The mass matrix .#,(51,02) (24) for the n = 2 states of hydrogen for the case of zero external fields. For the
explanation of the variables A, L and A and their numerical values see the introduction of this appendix and Table 3. The PV
parameters 1,2 can also be found in Table 3, the decay rates I'p 5 are given in (25) and (26).

Table 5a.
2P3/2,2,2 2P3/2,2,1 2P3,2,1,1 2Pq2,1,1 251/2,1,1
A+ 55
2P3/9,2,2 160 0 0 0 0
3/2 —ilp
A+ 5
2P3/9,2,1 0 ;160 0 0 0
3/2 iy
A A
96 __A
2P3/2,1,1 0 0 —iTp 1922 0
A A i 101 L
2Pq/2,1,1 0 0 ~T5 73 55— 3lP +%62L
—i6, L L+ 24
2S1/2,1,1 0 0 0 i . 32
1/2 72(52L -3 I's
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Table 5b.
2P3/27270 2P3/2,1,0 2P1/2,1,0 281/2,1,0 2P1/2,0,0 2P3/2,0,0
A+ 55
2P3/5,2,0 160 0 0 0 0 0
3/2 —irp
A-—4 A
2P3/2,1,0 0 7%[,1936 — 1953 0 0 0
A A i l(;lL
2P1/27170 0 7192\/5 %751—‘13 +%62L 0 0
—i81 L L+ 24
281/2,170 0 0 72(%2[/ _j—ng 0 0
2
: 101 L
2P1/2,0,0 0 0 0 0 -A-1irp +13162L
—i81 L L-34
281/2,0,0 0 0 0 0 —%i&gL *%Fs
Table 5c.
2P3/5,2,—1 2P3/2,1, -1 2Pq2,1,~-1 251/2,1,—1 2P3/2,2,—2
A+ 55
2P3/9,2,—1 . 160 0 0 0 0
3/2 —irp
A— A
2P3/271771 0 7l1—‘}936 7% 0 0
2
A A i i61 L
2Py/2,1,-1 0 RETTW 55— slp +%52L 0
—i61 L L+ 24
2S1/2,1,—1 0 0 : AN 0
1/2 72521/ —§FS
A+ 55
2P3/5,2,-2 0 0 0 0 T 160
3/2 irp

Table 6. The suitably normalised electric dipole operator D /(erg(1)) for the n = 2 states of hydrogen.

Table 6a.
| [ 2P35,2,2 [ 2P3/5,2,1  2P3/5,1,1  2P;,5, 1,1 2S;5,1,1 |
2P3/5,2,2 0 0 0 0 —3e_
2P;3/0,2,1 0 0 0 0 %eo
P50, 1,1 0 0 0 0 ~/3eo
2P1)s, 1,1 0 0 0 0 —V3eo
251/2,1,1 e+ %eo - %eo —V/3eo 0
Table 6b.
| I 2P5/»,2,0 2P;/2,1,0 2P12,1,0  2S1/5,1,0  2P;,5,0,0 2S1/2,0,0 |
2P3/2,2,1 0 0 0 —%e_ 0 0
2P3/2,1,1 0 0 7\@@, 0 —v6e_

0
2Py /2, 1,1 0 0 0 —V3e_ 0 V3e_
281/, 1,1 VJoe ~fle. Ve 0 V3e_ 0
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Table 6¢.
| | 2P5/»,2,1 2P;3/5,1,1 2P;,5,1,1 2S1/0,1,1 |
2P;/,2,0 0 0 0 f@@
2P3/5,1,0 0 0 0 \/§e+
2P, /5,1,0 0 0 0 Vet
281/2,1,0 %€+ \/§€+ Ve, 0
2P, /2,0,0 0 0 0 —V3e,
2S1/2,0,0 0 Ve —V3e, 0
Table 6d.
|| 2P3/27270 2P3/27170 2P1/27170 281/27170 2P1/27070 281/27070 |
2P3/5,2,0 0 0 0 V6eo 0 0
2P3/2,1,0 0 0 0 0 0 V6eo
2P}/, 1,0 0 0 0 0 0 —V/3eo
2S1/2,1,0 Ve 0 0 0 —V/3eo 0
2P /2,0,0 0 0 0 —V/3eo 0 0
2S1/2,0,0 0 V6eo —V/3eo 0 0 0
Table 6e.
| [ 2P5/»,2,—-1 2P3/5,1,—1 2P /5,1, —1 2S1/2,1,-1 |
2P3/2,2,0 0 0 0 —/2e_
2P3/2,1,0 0 0 0 —/2e_
2P1/27170 0 0 0 —v3e_
28, /5,1,0 e f@e, —V3e_ 0
2P1/27070 0 0 0 —v3e_
2S1/2,0,0 0 V6e_ —/3e_ 0
Table 6f.
|| 2P3/27270 2P3/27170 2P1/27170 281/27170 2P1/27070 281/27070 |
2P3/2,2,—1 0 0 0 f%@ 0 0
2P3/0,1,—1 0 0 0 Sey 0 —+/6e
2P /5,1, -1 0 0 0 V3e, 0 V3e.
281/2,1,—1 %€+ \/§€+ \/§€+ 0 \/§€+ 0
Table 6g.
| || 2P3/272771 2P3/271771 2P1/271771 281/271771 | 2P3/272772 |
2P3/2,2, —1 0 0 %eo 0
2P3/2,1,—1 0 0 3eo 0
2P /5,1, -1 0 0 V3eo 0
281/2,1,—1 %60 \/geo \/560 0 3e_
2P3/2727 —2 0 0 —3e+ 0




Table 7. The suitably normalised magnetic dipole operator p/up for the n = 2 states of hydrogen, where up = eh/(2m.) is
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the Bohr magneton and g = 2.002319304(76) is the Landé factor of the electron [1].

Table 7a.
| || 2P3/27272 | 2P3/27271 2P3/27171 2P1/27171 281/27171 |
2Py, 21 || e, —42eo — e e 0
2P3/5, 1,1 —%f% —22e, et e, —eo 0
281/27171 0 0 0 0 _%60
Table 7b.
| || 2P3/27270 2P3/27170 2P1/2717O 281/27170 2P1/27070 281/27070 |
2P3/27271 7%67 %67 7(]—\;6167 0 0 0
2P3/2,1,1 7012267 ,%ei \/i(g_l)e, 0 7@67 0
2P1/27171 %e— _ﬁ(g_l)e_ %e_ 0 _%e_ 0
281/2,1,1 0 0 0 —Ze_ 0 le_
Table 7c
| [ 2P55,2,1 P35, 1,1 2Py 5, 1,1 28,5, 1,1 |
2Py2,2,0 || Blile,  aiZe, YLl 0
2P3/2, 1, 0 f%&r 5<g1;2) e \/5(271) e 0
281/27170 0 0 0 %€+
2P1/2,0,0 0 ‘/ﬁ(gfl)&r e, 0
281/5,0,0 0 0 0 —de,
Table 7d.
| || 2P3/27270 2P3/27170 2P1/2717O 281/27170 2P1/27070 281/27070 |
2P3/2,2,0 0 — 22, ,@eo 0 0 0
2P3/27170 7%80 0 0 0 7@80 0
2P1/2,1,0 | —¥2g=Deg 0 0 0 ate, 0
251/2,1,0 0 0 0 0 0 —Zeo
2P1/2,0,0 0 —ﬁ(g_l)eo gg4€0 0 0 0
251 2,0,0 0 0 0 —Zeg 0 0
Table 7e.
| [ 2P5/5,2,—1  2Pa5,1,—1 2P, 5,1, =1 25,,5,1,—1 |
2Py2,2,0 || —Buie sz, MRl 0
2P3/2,1,0 *%ef 75<91;r2)e, 7—‘/5(2*1)67 0
w10 | e e ate 0
281 ,1,0 0 0 0 ~fe_
2P1/5,0,0 0 e ite. 0
281/2,0,0 0 0 0 7387
Table 7f.
| || 2P3/27270 2P3/27170 2P1/27170 281/27170 2P1/27070 281/27070 |
2P;5,2,—1 | Lle e, —le, 0 0 0
Wl —1 || —fPer e, VEile, 0 —Yog=lle, 0
2P1y2,1,-1 ﬁ(g_l)eJr %f# —rey 0 —Ley 0
281/2,1,*1 0 0 0 %8+ 0 %€+
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Table 7g.
| ” 2P3/9,2, —1 2P3/2,1, -1 2Py/,1,-1 281/2717_1 | 2P3/5,2, —2
2P3/2,2,-1 %60 *%80 *%eo 0 7\/§(Z+2)e*
2 Bat2) —1 Va(9+2)
2P3/2,1, -1 —45/1560 (’12 i =) _gTEeO 0 — 4\"{5 e_
Pip Lol —Sge —ige  ite 0 e
281/27 17 -1 0 0 0 %60 0

Table 8. The mass matrix #,(01,02) (24) for the n = 2 states of deuterium for the case of zero external fields. For the

explanation of the variables A, L and A and their numerical values see the introduction of this appendix and Table 3. The PV
parameters ;2 can also be found in Table 3, the decay rates I'p g are given in (25) and (26).

Table 8a.
2P3/27%7g 2P3/27%7% 2P3/27%7% 2P1/27%7% 281/27%7%
5 || A+ 2
P55, 2,3 120 0 0 0 0
3/2:325 2 7;[*}3
A+ A
2Py, 2,3 0 - jF;O 0 0 0
2
. A— A
3 3 VBA
2P3/2,5, 5 0 0 7;[‘}1380 - 0
3 3 VBA A i i01L
2P1/2, 5,3 0 0 ~ 576 »—slp +idy L
0., 3 3 0 0 0 —i01 L L+ 4y
1/2y 3572 7152[/ 7%1—‘5
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Table 8b.
2P0, 32,1 2P0, 3,1 2P0, 3,1 2S1,5,3,1 2P3/5, 3,1 2P15, 3,3 2812, 3, 3
A+ 55
2Py, 2,1 o120 0 0 0 0 0 0
3/2:2172 _%FP
A— A
%Py, 3,1 0 _iF;BO 7—‘é§g‘ 0 0 0 0
2
31 VBA A i i61L
2Pis2, 5,5 0 ~ 576 w—slP +idoL 0 0 0
2812, 5.3 0 0 Tl Lis 0 0 0
/2272 —i6a L —irs
A-24 A
2P3/2, %, % 0 0 0 0 7%1—}12 T 2882 0
A .
1 A 73_6 161L
2P1/2, 3,3 0 0 0 0 288v/2 —irp —2i8, L
11 - l(le L— iA2
251/2,5, 5 0 0 0 0 0 +2i0o L f;Fs
Table 8c.
2P35,3, -1 2P3/0,3, -1 2Py)5, 2, -1 2S,,5,2, -1 2Py, 1,1 2Py, 1, -1 28,1, -1
A
2P3/2,32, -3 fﬁ}fo 0 0 0 0 0 0
2
A- A VBA
2P39,5,—3 0 7iF}1380 %% 0 0 0 0
3 1 V5A A i i61L
2P1/2,5,—3 0 576 5 —3lr +idoL 0 0 0
3 1 —i01 L L+
2S1/2,5,—3 0 0 —ids L —51s 0 0 0
A—A
11 A
2P3/2, 5,3 0 0 0 0 7%]312 T 288v2 0
A .
1 L A — == 161L
2P1/2,3,—3 0 0 0 0 388V _zbfp —2i8, L
L — i6 L L-4
281/2,27 3 0 0 0 0 0 +2id2 L —%Fs
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Table 8d.
P32, 3, -5 P32, 5,—5 2P 5.-5  2S12.5,-35 | 2Ps2 3.3
2P;)5, 2, -2 fg}fo 0 0 0 0
2Py, 3 -3 Ar S 0 0
25,9, 3, 8 0 :gi f;z? 0
2P3/2, %7 —% 0 0 0 fjpf‘o
2

Table 9. The suitably normalised electric dipole operator D /(erp(1)) for the n = 2 states of deuterium.

Table 9a.
5 5 3 3 3 3 3 3 3
2P3/27%7§ 2P3/27§7§ 2P3/27§7§ 2P1/27§7§ 2Sl/27§7§
2P3/2,g,g 0 0 0 0 —3e_
2P32, 3,3 0 0 0 0 3\@80
Py, 2, 2 0 0 0 0 ~2,/%eo
2P 2,2, 2 0 0 0 0 —V3eo
281/27%7% 3€+ 3\@60 -2 %eo 7\/580 0
Table 9b.
2P3/27%7% 2P3/27%7% 2P1/2727% 281/2727% 2P3/27%7% 2P1/27%7% 281/27%7%
2P3/27%7% 0 0 0 73 %e, 0 0 0
2P3)5, 2,2 0 0 0 —\/2e- 0 0 —vb5e_
2Py 5, 3,2 0 0 0 —v2e_ 0 0 2e_
281/27%7% \/%87 %e, 7\/567 0 %67 2e_ 0
Table 9c.
2P3/27%7% 2P3/27%7% 2P1/27%7% 281/27%7%
2P3,2,2, 3 0 0 0 f%@
2P3/27%7% 0 0 0 \/§€+
2P15, 3,1 0 0 0 V2e,
28172, 3, 3 3\/§€+ \/§€+ V2ey 0
2P3/27%7% 0 0 0 _%6_’_
2P1/2, 3,1 0 0 0 —2e
28172, 3, 3 0 Ve —2e4 0
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Table 9d.
31 31 31 11 11 11
2P3/27g7% 2P3/27§7§ 2P1/27§7§ 281/27575 2P3/27§7§ 2P1/27§7§ 281/27575
2P3/27%7% 0 0 0 3\/?80 0 0 0
3 1 2 10
2P3/2,§,§ 0 0 0 *\/ﬁeo 0 0 3 €0
2P1/27%7% 0 0 0 —%eo 0 0 _2\/560
281/27%7% 3\/5‘30 —\/Ll—5€0 %60 0 —%eo —2\/geo 0
2P3/27%7% 0 0 0 _%60 0 0 _2\/g€0
2P1/27%7% 0 0 0 72\/%80 0 0 %60
281/27%7% 0 \/1—3960 -2 %60 0 _9 %eo %60 0
Table 9e
3 1 3 1 1 11 1 11
2P3/27%77% 2P3/27§77§ 2P1/27§77§ 281/272775 2P3/27§77§ 2P1/27277§ 281/275775
2P3/27%,§ 0 0 0 —31/%6_ 0 0 0
2P32, 2,1 0 0 0 4/ Ze_ 0 0 _\/ge_
31 8 4
et o : o e o o e
31 3 2 8 1 4
25172, 5,5 31/ 15€- -4/ ze- -1/ 3€e- 0 Jse- \/;e, 0
11 1 4
2P3/2,3: 3 0 0 0 — 56— 0 0 —2,/35e-
P12 5% 0 0 0 e 0 0 2o
281/2,3,3 0 Se- —y\/3e- 0 —2,/4e_ \/ge_ 0
Table 9f.
3 1 31 31 11 11 1
2P3/0, 2,1 2P3/2, 5,5 2P1/2,5,5 2512, 5,3 2P3/2,5, 5 2P1/2, 5,5 2512, 5+ 3
2P3/27g7_% 0 O O _3 %€+ 0 O O
2P3/27%7_% 0 0 0 4 %€+ 0 0 — %e+
2Py /s, 27*% 0 0 0 \/§e+ 0 0 \/geJr
281/27%7*% 3 1—30€+ 44/ 1—25€+ \/§€+ 0 %e+ \/geJF 0
2P3/2,3, 3 0 0 0 —Loey 0 0 2\@6+
2P1/27%7—% 0 0 0 —\/§e+ (i 0 _ §e+
28175, 0 e, fies 0 N 0
Table 9g.
2P3/27277% 2P3/27%77% 2P1/27%77% 281/27%77% 2P3/27%77% 2P1/27%77% 281/27%77%
2P3/27§,—§ 0 0 0 3\/§e0 0 0
3 1 2 10
2P3/2,5, =3 0 0 0 T €0 0 0 3 €o
2P, 5,3 0 0 0 Leo 0 0 —2,/2e
2S12,3, -3 3\/560 \/21—560 %eo 0 7%60 72\/§e0 0
2P3/2,3,~3 0 0 0 —Leo 0 0 2\@@0
2P, 5, 1, 1 0 0 0 —2\/§e0 0 0 — e
2815, 4,14 0 L, —2\/§e0 0 2\@60 e 0
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Table 9h.
2P3/27%7_% 2P3/27%7_% 2P1/27%7_% 281/27%7_%
2P3/0,2,—1 0 0 0 — e
2P3/2,3, -3 0 0 0 —/2e_
2P0, 3, -1 0 0 0 —V2e_
2S1/0,3,—1 3\/§e, 7\/587 —VZe_ 0
21:’3/27%7—% 0 0 0 —%e_
2131/27 2,7% 0 0 0 —2e_
2512, 3,—3 0 Vhe_ —2e_ 0
Table 9i.
2P3/0,2, -1 2P3/0,3, -2 2Py;0,3,—1  2Sy,5,2, -1 2P3p,1,—1 2Py, 2,1 2Si5,3, -1
9Py, 3, —2 0 0 0 73\/§e+ 0 0 0
2P3/27%77% 0 0 0 \/geJr 0 0 7\/564,»
2P0, 2,3 0 0 0 V2e, 0 0 2e.,
281/27%7_% \/%€+ \/§e+ \/§€+ 0 %E_F 2€+ 0
Table 9j.
2P3/27%77% 2P3/27%77% 2P1/27277% 281/27%77% 2P3/27%7ig
2P3/27gv_% 0 0 0 3\/560 0
Wy, 2, 2 0 0 0 2,/2e0 0
2P1/27 277% 0 0 0 \/geo 0
2S1/2,2, -2 3\/%% 2\/§€o V3eo 0 3eyt
2P3/27%7—% 0 0 0 —3e_ 0

Table 10. The suitably normalised magnetic dipole operator u/up for the n = 2 states of deuterium, where up = eh/(2me.)
is the Bohr magneton and g = 2.002319304(76) is the Landé factor of the electron [1].

Table 10a.
2P3/27g7g 2P3/27g7% 2P3/27%7% 2P1/27%7% 281/27%7%
_ 249 _gt2 g+2 _g-1
2Py, 3.3 2 €0 VI0©- e v i 0
5 3 +2 3(9+2) 2(9+2) 2(g—1)
2P3/27 519 5\7/—1—06-’_ \/_jT)eO - ?35 ) e \(/(]1_5 )eO 0
3 3 +2 2(g+2 11(g+2 2(g—1
2P3/2, 5,5 —f/ﬁe+ —f<5\g/§) ) —#e — 3"\/5 €o 0
3 3 g—1 3(g—1 2(g—1 g—4
2Pz 72 Trer Srteo  —HFe e 0
25172, 555 0 0 0 0 —Leo
Table 10b.
31 31 31 11 11 11
2P3/0, 2,4 2P3/2, 5,5 2P1/2, 5,5 2512, 5,5 2P3/2, 5,5 2P1/2, 5,5 2512, 5,3
21:)3/27 27% 7@ - %“'267 7g\;gle* 0 0 0
2P 3 _V2(g+2) _1vR(g+2),  _VBle=D), Vi0(g+2) , _V5g—1,
3/2:27 73 103 °7 \/;0\/5 - fo/ﬁ - \/ﬁ\/g - 33 ©-
3 g—1 _ V8(g—1) 2(9—4) 2(g—1) _g—4
2Pl/27 273 \/%e— 3v/15 e_ 63 e_ Y 63 e_ 3\/56_ 0
281/27 27% O 0 0 7%87 0 O %e_
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Table 10c.
: 3 3 3 3 3 3
2P3/2, 5, 3 2P3/2, 35,5 2P1)2,5,5 251/2,5,5
2(9+2) V2(g+2) g1
2P3/2, 35, 3 5 6+ &9\/5 € \/_\/%e‘*' 0
31 +2 11v2(g+2) 8(g—1)
2P3/27 212 _gT6+ T\%)e.;. \Sf\;zﬁ )e 0
3 1 g—1 8(g—1 2(g—4
P12 502 e+ Wiz ©F e ot 0
281/2, 553 0 \/_(0 : \/_(0 : %64»
11 10(g+2 2(g—1
2P3/2, 5,3 0 ﬁ — Vs e+ 0
11 5(g—1) g—4
2P1/2, 5,5 0 3\9/5 et g—\/ge+ 0
11 —Le,
281/27 CRID) 0 0 0 V3
Table 10d.
5 3 1 31 1 11 11 11
2P3/27§7% 2P3/27§7§ 2P1/27§7§ 281/27275 2P3/27§7§ 2P1/27§7§ 281/27§7§
2 2 —1
2P35, 5.3 — 50 — e “Seo 0 0 0 0
2P3/2, 5,3 -2 —Ut2) ¢, Ao, 0 REIUES P (USSP 0
2Py /2, %7% g\;gleo —2(;7—\;51)6 91—784(30 0 —%eo \/5(:;774)60 0
2S1/2, 2,4 0 0 0 —geg 0 0 —V23¢,
2P3/2,5, 3 0 S, _gsle 0 _Set,,  _2/en,, 0
2P1/27 %,% 0 %eo \/i(g—4) €o 0 —%60 —%60 0
g
281/27%7% 0 0 0 —%60 0 0 Zeg
Table 10e
3 _ 1 1 1 11 1 11
2P3/27%77% 2P3/27§77§ 2P1/27277§ 281/272775 2P3/27§77§ 2P1/27277§ 281/275775
3v2(g+2) V2(g+2) g—1
2P3), 27% - 13 €- 1% €- 3/_1_06— 0 0 0 0
1 V2(g9+2) 11v2(g9+2) 4v2(g—1) VI0(g+2) VB(g—1)
2P3/2,%,5 —Y=te  ——2f8e 9\;’5 _ 0 Vit _WBlemlle_ 0
2Py /2, 2,1 %e, 74\/3%1&37 \/§<gf4)ef 0 \/5<1g871>67 = 0
2812, 4,1 0 0 0 3o 0 0 le_
2P3/2, 3,3 0 Vgt Vgl 0 _avEen Al 0
2P1/2, 5, 3 0 VACEHIS (CESAPY 0 STV P 0
251/, 4,4 0 0 0 g 0 0 Y
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Table 10f.
31 31 3 1 11 11 11
2P3/27g7% 2P3/27§7§ 2P1/27§7§ 281/27575 2P3/27§7§ 2P1/27§7§ 281/27575
9Py, 3, 1 ENEIFESI V2ai2) —ole, 0 0 0 0
3 _ 1 V2(g+2) 11v/2(g+2) 4v2(g—1) V10(g+2) VB(g—1)
2Ps2,5, =3 || —i5 e+ f45q e }jg e+ 0 7\[1; e+ —g—e 0
_ 4v2(g—1 2(g—4 3(g—1 —4
2P1/2, 3,3 !j/_lTl)e?L ﬁ&r - (sga Ley 0 <1g8 Ley 7(g9 Ley 0
28,5, 4,1 0 0 0 V2ag, 0 0 e,
V10(g+2) V2(g—1) 5v/2(g+2) 4(g—1)
2P3/2, l,*l 0 - e - e 0 —s € — 5 €4+ 0
op. 1 _1 0 Va(go1) (9= 0 ag=1) Va(5-1) 0
/2,272 9 ¢ 9 €+ 9 &+ s € Vs
281/27%7*% 0 0 0 —fey 0 0 —Y2de,
Table 10g.
5 3 1 3 1 3 1 11 11 11
2P3/5,3, -1 2P3/2,5,—5 2P1s2,5,—35 2S1/2,5.—35 2P3s2,5.,—35 2P1s2,5,—35 251,2,5,—3
2P3/2, %7—% %60 *%60 %60 0 0 0 0
2P3/, 3, -1 a2 %eo 2(95’—\;51)30 0 —@60 %60 0
3 1 -1 2(g—1) 4 1 3(g—4)
2P1/2,5,—3 g\/g €0 9(]\/5 €o —9i=eo 0 —%5~eo +eo 0
2S1/2, 2,1 0 0 0 Ze, 0 0 —V23¢,
2P3/y, 1, -1 0 _ V) _9le, 0 3(942) o 2vV29-1) o 0
)25 T3 9 9 18 9
2Py /9, %, —1 0 %eo \/5(574) 0 %eo g, . 0
281/27%7_% 0 0 0 —%60 0 0 —Zeg
Table 10h.
2P3/0,5, -3 2P3)5, 3, -3 2P/, 3, -3 281/2,3, -3
2(9+2) V2(g+2) _g-1
2P0, 5,1 —=%5 e- 077 e- fme— 0
3 1 12 11v/2(g+2) 8(g—1)
2P3/2,5,—3 e _\/307\;56— _\/_s\jﬁ - 0
3 1 -1 8(g—1 3(g—4
2P1/273§7—1§ gﬁe_ _—B(f/]ﬁ)e_ 6(\9/5 )e_ 0
2S1/2,5,— 3 0 \/_0 s 0 %e_
1 1 10(9+2) 2(g—1)
2P3/2,5,—3 0 —ﬁe_ — \"’/g _ 0
1 1 V5(g—1) g—4
2P1/2, PR 0 3\g/§ e_ 57567 0
281/27 %77% 0 0 0 _%e_
Table 10i.
5 3 1 1 3 1 11 11 11
2P3/27§77% 2P3/27§77§ 2P1/27277§ 281/275775 2P3/27§77§ 2P1/27§77§ 281/275775
21:’3/27 %7_3 we+ %e+ 7%e+ 0 0 0 0
3 _3 V2(g+2) 11v2(g+2) V8(g—1) VI0(g9+2) _ VBg=1)
DI TR s m L Al T T
3 _3 g_—l 8(g—1 2(g—4 2(g—1 _g_—4
2131/27327 2 V30 €+ 3vis €t 63 €+ 0 6v3 €+ 3736+ 0
281/2,5,—3 0 0 0 ey 0 0 ey




The European Physical Journal D — Supplementary Online Material

Table 10j.
5 3 3 3 3 3 3 3
2P3/2757_§ 2P3/27§7_§ 2P1/2757_§ 281/2757—5
3 _3 V2(9+2) 11(g+2) 2(g—1)
2P3/2,5,—% 7\[5\% €o I eo —3g\/g eo
251/2, 5,735 0 0 %60




